
Chapter 6

Task Execution

Most concurrent applications are organized around the execution of tasks: ab-
stract, discrete units of work. Dividing the work of an application into tasks
simplifies program organization, facilitates error recovery by providing natural
transaction boundaries, and promotes concurrency by providing a natural struc-
ture for parallelizing work.

6.1 Executing tasks in threads

The first step in organizing a program around task execution is identifying sen-
sible task boundaries. Ideally, tasks are independent activities: work that doesn’t
depend on the state, result, or side effects of other tasks. Independence facili-
tates concurrency, as independent tasks can be executed in parallel if there are
adequate processing resources. For greater flexibility in scheduling and load bal-
ancing tasks, each task should also represent a small fraction of your application’s
processing capacity.

Server applications should exhibit both good throughput and good responsiveness
under normal load. Application providers want applications to support as many
users as possible, so as to reduce provisioning costs per user; users want to get
their response quickly. Further, applications should exhibit graceful degradation
as they become overloaded, rather than simply falling over under heavy load.
Choosing good task boundaries, coupled with a sensible task execution policy (see
Section 6.2.2), can help achieve these goals.

Most server applications offer a natural choice of task boundary: individual
client requests. Web servers, mail servers, file servers, EJB containers, and da-
tabase servers all accept requests via network connections from remote clients.
Using individual requests as task boundaries usually offers both independence
and appropriate task sizing. For example, the result of submitting a message to
a mail server is not affected by the other messages being processed at the same
time, and handling a single message usually requires a very small percentage of
the server’s total capacity.

113



114 Chapter 6. Task Execution

6.1.1 Executing tasks sequentially

There are a number of possible policies for scheduling tasks within an applica-
tion, some of which exploit the potential for concurrency better than others. The
simplest is to execute tasks sequentially in a single thread. SingleThreadWeb-
Server in Listing 6.1 processes its tasks—HTTP requests arriving on port 80—
sequentially. The details of the request processing aren’t important; we’re inter-
ested in characterizing the concurrency of various scheduling policies.

class SingleThreadWebServer {
public static void main(String[] args) throws IOException {

ServerSocket socket = new ServerSocket(80);
while (true) {

Socket connection = socket.accept();
handleRequest(connection);

}
}

}

Listing 6.1. Sequential web server.

SingleThreadedWebServer is simple and theoretically correct, but would per-
form poorly in production because it can handle only one request at a time. The
main thread alternates between accepting connections and processing the associ-
ated request. While the server is handling a request, new connections must wait
until it finishes the current request and calls accept again. This might work if
request processing were so fast that handleRequest effectively returned immedi-
ately, but this doesn’t describe any web server in the real world.

Processing a web request involves a mix of computation and I/O. The server
must perform socket I/O to read the request and write the response, which can
block due to network congestion or connectivity problems. It may also perform
file I/O or make database requests, which can also block. In a single-threaded
server, blocking not only delays completing the current request, but prevents
pending requests from being processed at all. If one request blocks for an un-
usually long time, users might think the server is unavailable because it appears
unresponsive. At the same time, resource utilization is poor, since the CPU sits
idle while the single thread waits for its I/O to complete.

In server applications, sequential processing rarely provides either good
throughput or good responsiveness. There are exceptions—such as when tasks
are few and long-lived, or when the server serves a single client that makes only
a single request at a time—but most server applications do not work this way.1

1. In some situations, sequential processing may offer a simplicity or safety advantage; most GUI
frameworks process tasks sequentially using a single thread. We return to the sequential model in
Chapter 9.



6.1. Executing tasks in threads 115

6.1.2 Explicitly creating threads for tasks

A more responsive approach is to create a new thread for servicing each request,
as shown in ThreadPerTaskWebServer in Listing 6.2.

class ThreadPerTaskWebServer {
public static void main(String[] args) throws IOException {

ServerSocket socket = new ServerSocket(80);
while (true) {

final Socket connection = socket.accept();
Runnable task = new Runnable() {

public void run() {
handleRequest(connection);

}
};

new Thread(task).start();
}

}
}

Listing 6.2. Web server that starts a new thread for each request.

ThreadPerTaskWebServer is similar in structure to the single-threaded
version—the main thread still alternates between accepting an incoming con-
nection and dispatching the request. The difference is that for each connection,
the main loop creates a new thread to process the request instead of processing it
within the main thread. This has three main consequences:

• Task processing is offloaded from the main thread, enabling the main loop
to resume waiting for the next incoming connection more quickly. This
enables new connections to be accepted before previous requests complete,
improving responsiveness.

• Tasks can be processed in parallel, enabling multiple requests to be serviced
simultaneously. This may improve throughput if there are multiple process-
ors, or if tasks need to block for any reason such as I/O completion, lock
acquisition, or resource availability.

• Task-handling code must be thread-safe, because it may be invoked concur-
rently for multiple tasks.

Under light to moderate load, the thread-per-task approach is an improvement
over sequential execution. As long as the request arrival rate does not exceed the
server’s capacity to handle requests, this approach offers better responsiveness
and throughput.



116 Chapter 6. Task Execution

6.1.3 Disadvantages of unbounded thread creation

For production use, however, the thread-per-task approach has some practical
drawbacks, especially when a large number of threads may be created:

Thread lifecycle overhead. Thread creation and teardown are not free. The ac-
tual overhead varies across platforms, but thread creation takes time, intro-
ducing latency into request processing, and requires some processing activ-
ity by the JVM and OS. If requests are frequent and lightweight, as in most
server applications, creating a new thread for each request can consume
significant computing resources.

Resource consumption. Active threads consume system resources, especially
memory. When there are more runnable threads than available process-
ors, threads sit idle. Having many idle threads can tie up a lot of memory,
putting pressure on the garbage collector, and having many threads com-
peting for the CPUs can impose other performance costs as well. If you have
enough threads to keep all the CPUs busy, creating more threads won’t help
and may even hurt.

Stability. There is a limit on how many threads can be created. The limit varies
by platform and is affected by factors including JVM invocation parameters,
the requested stack size in the Thread constructor, and limits on threads
placed by the underlying operating system.2 When you hit this limit, the
most likely result is an OutOfMemoryError. Trying to recover from such an
error is very risky; it is far easier to structure your program to avoid hitting
this limit.

Up to a certain point, more threads can improve throughput, but beyond that
point creating more threads just slows down your application, and creating one
thread too many can cause your entire application to crash horribly. The way to
stay out of danger is to place some bound on how many threads your application
creates, and to test your application thoroughly to ensure that, even when this
bound is reached, it does not run out of resources.

The problem with the thread-per-task approach is that nothing places any
limit on the number of threads created except the rate at which remote users can
throw HTTP requests at it. Like other concurrency hazards, unbounded thread
creation may appear to work just fine during prototyping and development, with
problems surfacing only when the application is deployed and under heavy load.
So a malicious user, or enough ordinary users, can make your web server crash
if the traffic load ever reaches a certain threshold. For a server application that is
supposed to provide high availability and graceful degradation under load, this
is a serious failing.

2. On 32-bit machines, a major limiting factor is address space for thread stacks. Each thread main-
tains two execution stacks, one for Java code and one for native code. Typical JVM defaults yield
a combined stack size of around half a megabyte. (You can change this with the -Xss JVM flag or
through the Thread constructor.) If you divide the per-thread stack size into 232, you get a limit of
a few thousands or tens of thousands of threads. Other factors, such as OS limitations, may impose
stricter limits.



6.2. The Executor framework 117

6.2 The Executor framework

Tasks are logical units of work, and threads are a mechanism by which tasks
can run asynchronously. We’ve examined two policies for executing tasks using
threads—execute tasks sequentially in a single thread, and execute each task in its
own thread. Both have serious limitations: the sequential approach suffers from
poor responsiveness and throughput, and the thread-per-task approach suffers
from poor resource management.

In Chapter 5, we saw how to use bounded queues to prevent an overloaded
application from running out of memory. Thread pools offer the same benefit for
thread management, and java.util.concurrent provides a flexible thread pool
implementation as part of the Executor framework. The primary abstraction for
task execution in the Java class libraries is not Thread, but Executor, shown in
Listing 6.3.

public interface Executor {
void execute(Runnable command);

}

Listing 6.3. Executor interface.

Executor may be a simple interface, but it forms the basis for a flexible and
powerful framework for asynchronous task execution that supports a wide vari-
ety of task execution policies. It provides a standard means of decoupling task
submission from task execution, describing tasks with Runnable. The Executor
implementations also provide lifecycle support and hooks for adding statistics
gathering, application management, and monitoring.

Executor is based on the producer-consumer pattern, where activities that
submit tasks are the producers (producing units of work to be done) and the
threads that execute tasks are the consumers (consuming those units of work).
Using an Executor is usually the easiest path to implementing a producer-consumer
design in your application.

6.2.1 Example: web server using Executor

Building a web server with an Executor is easy. TaskExecutionWebServer in
Listing 6.4 replaces the hard-coded thread creation with an Executor. In this
case, we use one of the standard Executor implementations, a fixed-size thread
pool with 100 threads.

In TaskExecutionWebServer, submission of the request-handling task is de-
coupled from its execution using an Executor, and its behavior can be changed
merely by substituting a different Executor implementation. Changing Executor
implementations or configuration is far less invasive than changing the way tasks
are submitted; Executor configuration is generally a one-time event and can eas-
ily be exposed for deployment-time configuration, whereas task submission code
tends to be strewn throughout the program and harder to expose.



118 Chapter 6. Task Execution

class TaskExecutionWebServer {
private static final int NTHREADS = 100;
private static final Executor exec

= Executors.newFixedThreadPool(NTHREADS);

public static void main(String[] args) throws IOException {
ServerSocket socket = new ServerSocket(80);
while (true) {

final Socket connection = socket.accept();
Runnable task = new Runnable() {

public void run() {
handleRequest(connection);

}
};
exec.execute(task);

}
}

}

Listing 6.4. Web server using a thread pool.

We can easily modify TaskExecutionWebServer to behave like ThreadPer-
TaskWebServer by substituting an Executor that creates a new thread for each
request. Writing such an Executor is trivial, as shown in ThreadPerTaskExecut-
or in Listing 6.5.

public class ThreadPerTaskExecutor implements Executor {
public void execute(Runnable r) {

new Thread(r).start();
};

}

Listing 6.5. Executor that starts a new thread for each task.

Similarly, it is also easy to write an Executor that would make TaskExecut-
ionWebServer behave like the single-threaded version, executing each task syn-
chronously before returning from execute, as shown in WithinThreadExecutor
in Listing 6.6.

6.2.2 Execution policies

The value of decoupling submission from execution is that it lets you easily spec-
ify, and subsequently change without great difficulty, the execution policy for a
given class of tasks. An execution policy specifies the “what, where, when, and
how” of task execution, including:



6.2. The Executor framework 119

public class WithinThreadExecutor implements Executor {
public void execute(Runnable r) {

r.run();
};

}

Listing 6.6. Executor that executes tasks synchronously in the calling thread.

• In what thread will tasks be executed?

• In what order should tasks be executed (FIFO, LIFO, priority order)?

• How many tasks may execute concurrently?

• How many tasks may be queued pending execution?

• If a task has to be rejected because the system is overloaded, which task
should be selected as the victim, and how should the application be noti-
fied?

• What actions should be taken before or after executing a task?

Execution policies are a resource management tool, and the optimal policy
depends on the available computing resources and your quality-of-service re-
quirements. By limiting the number of concurrent tasks, you can ensure that
the application does not fail due to resource exhaustion or suffer performance
problems due to contention for scarce resources.3 Separating the specification of
execution policy from task submission makes it practical to select an execution
policy at deployment time that is matched to the available hardware.

Whenever you see code of the form:
new Thread(runnable).start()

and you think you might at some point want a more flexible execution
policy, seriously consider replacing it with the use of an Executor.

6.2.3 Thread pools

A thread pool, as its name suggests, manages a homogeneous pool of worker
threads. A thread pool is tightly bound to a work queue holding tasks waiting to
be executed. Worker threads have a simple life: request the next task from the
work queue, execute it, and go back to waiting for another task.

3. This is analogous to one of the roles of a transaction monitor in an enterprise application: it can
throttle the rate at which transactions are allowed to proceed so as not to exhaust or overstress limited
resources.



120 Chapter 6. Task Execution

Executing tasks in pool threads has a number of advantages over the thread-
per-task approach. Reusing an existing thread instead of creating a new one
amortizes thread creation and teardown costs over multiple requests. As an
added bonus, since the worker thread often already exists at the time the request
arrives, the latency associated with thread creation does not delay task execution,
thus improving responsiveness. By properly tuning the size of the thread pool,
you can have enough threads to keep the processors busy while not having so
many that your application runs out of memory or thrashes due to competition
among threads for resources.

The class library provides a flexible thread pool implementation along with
some useful predefined configurations. You can create a thread pool by calling
one of the static factory methods in Executors:

newFixedThreadPool. A fixed-size thread pool creates threads as tasks are sub-
mitted, up to the maximum pool size, and then attempts to keep the pool
size constant (adding new threads if a thread dies due to an unexpected
Exception).

newCachedThreadPool. A cached thread pool has more flexibility to reap idle
threads when the current size of the pool exceeds the demand for process-
ing, and to add new threads when demand increases, but places no bounds
on the size of the pool.

newSingleThreadExecutor. A single-threaded executor creates a single worker
thread to process tasks, replacing it if it dies unexpectedly. Tasks are guar-
anteed to be processed sequentially according to the order imposed by the
task queue (FIFO, LIFO, priority order).4

newScheduledThreadPool. A fixed-size thread pool that supports delayed and
periodic task execution, similar to Timer. (See Section 6.2.5.)

The newFixedThreadPool and newCachedThreadPool factories return in-
stances of the general-purpose ThreadPoolExecutor, which can also be used
directly to construct more specialized executors. We discuss thread pool configu-
ration options in depth in Chapter 8.

The web server in TaskExecutionWebServer uses an Executor with a bounded
pool of worker threads. Submitting a task with execute adds the task to the work
queue, and the worker threads repeatedly dequeue tasks from the work queue
and execute them.

Switching from a thread-per-task policy to a pool-based policy has a big effect
on application stability: the web server will no longer fail under heavy load.5

4. Single-threaded executors also provide sufficient internal synchronization to guarantee that any
memory writes made by tasks are visible to subsequent tasks; this means that objects can be safely
confined to the “task thread” even though that thread may be replaced with another from time to
time.
5. While the server may not fail due to the creation of too many threads, if the task arrival rate exceeds
the task service rate for long enough it is still possible (just harder) to run out of memory because
of the growing queue of Runnables awaiting execution. This can be addressed within the Executor
framework by using a bounded work queue—see Section 8.3.2.



6.2. The Executor framework 121

It also degrades more gracefully, since it does not create thousands of threads
that compete for limited CPU and memory resources. And using an Executor
opens the door to all sorts of additional opportunities for tuning, management,
monitoring, logging, error reporting, and other possibilities that would have been
far more difficult to add without a task execution framework.

6.2.4 Executor lifecycle

We’ve seen how to create an Executor but not how to shut one down. An Exec-
utor implementation is likely to create threads for processing tasks. But the JVM
can’t exit until all the (nondaemon) threads have terminated, so failing to shut
down an Executor could prevent the JVM from exiting.

Because an Executor processes tasks asynchronously, at any given time the
state of previously submitted tasks is not immediately obvious. Some may have
completed, some may be currently running, and others may be queued awaiting
execution. In shutting down an application, there is a spectrum from graceful
shutdown (finish what you’ve started but don’t accept any new work) to abrupt
shutdown (turn off the power to the machine room), and various points in be-
tween. Since Executors provide a service to applications, they should be able to
be shut down as well, both gracefully and abruptly, and feed back information to
the application about the status of tasks that were affected by the shutdown.

To address the issue of execution service lifecycle, the ExecutorService in-
terface extends Executor, adding a number of methods for lifecycle management
(as well as some convenience methods for task submission). The lifecycle man-
agement methods of ExecutorService are shown in Listing 6.7.

public interface ExecutorService extends Executor {
void shutdown();
List<Runnable> shutdownNow();
boolean isShutdown();
boolean isTerminated();
boolean awaitTermination(long timeout, TimeUnit unit)

throws InterruptedException;
// ... additional convenience methods for task submission

}

Listing 6.7. Lifecycle methods in ExecutorService.

The lifecycle implied by ExecutorService has three states—running, shutting
down, and terminated. ExecutorServices are initially created in the running state.
The shutdown method initiates a graceful shutdown: no new tasks are accepted
but previously submitted tasks are allowed to complete—including those that
have not yet begun execution. The shutdownNow method initiates an abrupt shut-
down: it attempts to cancel outstanding tasks and does not start any tasks that
are queued but not begun.

Tasks submitted to an ExecutorService after it has been shut down are han-
dled by the rejected execution handler (see Section 8.3.3), which might silently dis-



122 Chapter 6. Task Execution

card the task or might cause execute to throw the unchecked RejectedExecu-
tionException. Once all tasks have completed, the ExecutorService transitions
to the terminated state. You can wait for an ExecutorService to reach the termi-
nated state with awaitTermination, or poll for whether it has yet terminated with
isTerminated. It is common to follow shutdown immediately by awaitTermina-
tion, creating the effect of synchronously shutting down the ExecutorService.
(Executor shutdown and task cancellation are covered in more detail in Chapter
7.)

LifecycleWebServer in Listing 6.8 extends our web server with lifecycle sup-
port. It can be shut down in two ways: programmatically by calling stop, and
through a client request by sending the web server a specially formatted HTTP
request.

class LifecycleWebServer {
private final ExecutorService exec = ...;

public void start() throws IOException {
ServerSocket socket = new ServerSocket(80);
while (!exec.isShutdown()) {

try {
final Socket conn = socket.accept();
exec.execute(new Runnable() {

public void run() { handleRequest(conn); }
});

} catch (RejectedExecutionException e) {
if (!exec.isShutdown())

log("task submission rejected", e);
}

}
}

public void stop() { exec.shutdown(); }

void handleRequest(Socket connection) {
Request req = readRequest(connection);
if (isShutdownRequest(req))

stop();
else

dispatchRequest(req);
}

}

Listing 6.8. Web server with shutdown support.



6.3. Finding exploitable parallelism 123

6.2.5 Delayed and periodic tasks

The Timer facility manages the execution of deferred (“run this task in 100 ms”)
and periodic (“run this task every 10 ms”) tasks. However, Timer has some draw-
backs, and ScheduledThreadPoolExecutor should be thought of as its replace-
ment.6 You can construct a ScheduledThreadPoolExecutor through its construc-
tor or through the newScheduledThreadPool factory.

A Timer creates only a single thread for executing timer tasks. If a timer
task takes too long to run, the timing accuracy of other TimerTasks can suffer.
If a recurring TimerTask is scheduled to run every 10 ms and another Timer-
Task takes 40 ms to run, the recurring task either (depending on whether it was
scheduled at fixed rate or fixed delay) gets called four times in rapid succession
after the long-running task completes, or “misses” four invocations completely.
Scheduled thread pools address this limitation by letting you provide multiple
threads for executing deferred and periodic tasks.

Another problem with Timer is that it behaves poorly if a TimerTask throws
an unchecked exception. The Timer thread doesn’t catch the exception, so an un-
checked exception thrown from a TimerTask terminates the timer thread. Timer
also doesn’t resurrect the thread in this situation; instead, it erroneously assumes
the entire Timer was cancelled. In this case, TimerTasks that are already sched-
uled but not yet executed are never run, and new tasks cannot be scheduled.
(This problem, called “thread leakage” is described in Section 7.3, along with
techniques for avoiding it.)

OutOfTime in Listing 6.9 illustrates how a Timer can become confused in this
manner and, as confusion loves company, how the Timer shares its confusion
with the next hapless caller that tries to submit a TimerTask. You might expect
the program to run for six seconds and exit, but what actually happens is that
it terminates after one second with an IllegalStateException whose message
text is “Timer already cancelled”. ScheduledThreadPoolExecutor deals properly
with ill-behaved tasks; there is little reason to use Timer in Java 5.0 or later.

If you need to build your own scheduling service, you may still be able to take
advantage of the library by using a DelayQueue, a BlockingQueue implementation
that provides the scheduling functionality of ScheduledThreadPoolExecutor. A
DelayQueue manages a collection of Delayed objects. A Delayed has a delay time
associated with it: DelayQueue lets you take an element only if its delay has
expired. Objects are returned from a DelayQueue ordered by the time associated
with their delay.

6.3 Finding exploitable parallelism

The Executor framework makes it easy to specify an execution policy, but in
order to use an Executor, you have to be able to describe your task as a Runn-
able. In most server applications, there is an obvious task boundary: a single
client request. But sometimes good task boundaries are not quite so obvious, as

6. Timer does have support for scheduling based on absolute, not relative time, so that tasks can be
sensitive to changes in the system clock; ScheduledThreadPoolExecutor supports only relative time.



124 Chapter 6. Task Execution

public class OutOfTime {
public static void main(String[] args) throws Exception {

Timer timer = new Timer();
timer.schedule(new ThrowTask(), 1);
SECONDS.sleep(1);
timer.schedule(new ThrowTask(), 1);
SECONDS.sleep(5);

}

static class ThrowTask extends TimerTask {
public void run() { throw new RuntimeException(); }

}
}

Listing 6.9. Class illustrating confusing Timer behavior.

in many desktop applications. There may also be exploitable parallelism within
a single client request in server applications, as is sometimes the case in database
servers. (For a further discussion of the competing design forces in choosing task
boundaries, see [CPJ 4.4.1.1].)

In this section we develop several versions of a component that admit varying
degrees of concurrency. Our sample component is the page-rendering portion of
a browser application, which takes a page of HTML and renders it into an image
buffer. To keep it simple, we assume that the HTML consists only of marked up
text interspersed with image elements with pre-specified dimensions and URLs.

6.3.1 Example: sequential page renderer

The simplest approach is to process the HTML document sequentially. As text
markup is encountered, render it into the image buffer; as image references are
encountered, fetch the image over the network and draw it into the image buffer
as well. This is easy to implement and requires touching each element of the
input only once (it doesn’t even require buffering the document), but is likely to
annoy the user, who may have to wait a long time before all the text is rendered.

A less annoying but still sequential approach involves rendering the text ele-
ments first, leaving rectangular placeholders for the images, and after completing
the initial pass on the document, going back and downloading the images and
drawing them into the associated placeholder. This approach is shown in Sin-
gleThreadRenderer in Listing 6.10.

Downloading an image mostly involves waiting for I/O to complete, and dur-
ing this time the CPU does little work. So the sequential approach may under-
utilize the CPU, and also makes the user wait longer than necessary to see the
finished page. We can achieve better utilization and responsiveness by breaking
the problem into independent tasks that can execute concurrently.



6.3. Finding exploitable parallelism 125

public class SingleThreadRenderer {
void renderPage(CharSequence source) {

renderText(source);
List<ImageData> imageData = new ArrayList<ImageData>();
for (ImageInfo imageInfo : scanForImageInfo(source))

imageData.add(imageInfo.downloadImage());
for (ImageData data : imageData)

renderImage(data);
}

}

Listing 6.10. Rendering page elements sequentially.

6.3.2 Result-bearing tasks: Callable and Future

The Executor framework uses Runnable as its basic task representation. Runn-
able is a fairly limiting abstraction; run cannot return a value or throw checked
exceptions, although it can have side effects such as writing to a log file or placing
a result in a shared data structure.

Many tasks are effectively deferred computations—executing a database
query, fetching a resource over the network, or computing a complicated func-
tion. For these types of tasks, Callable is a better abstraction: it expects that the
main entry point, call, will return a value and anticipates that it might throw
an exception.7 Executors includes several utility methods for wrapping other
types of tasks, including Runnable and java.security.PrivilegedAction, with
a Callable.

Runnable and Callable describe abstract computational tasks. Tasks are usu-
ally finite: they have a clear starting point and they eventually terminate. The
lifecycle of a task executed by an Executor has four phases: created, submitted,
started, and completed. Since tasks can take a long time to run, we also want to be
able to cancel a task. In the Executor framework, tasks that have been submitted
but not yet started can always be cancelled, and tasks that have started can some-
times be cancelled if they are responsive to interruption. Cancelling a task that
has already completed has no effect. (Cancellation is covered in greater detail in
Chapter 7.)

Future represents the lifecycle of a task and provides methods to test whether
the task has completed or been cancelled, retrieve its result, and cancel the task.
Callable and Future are shown in Listing 6.11. Implicit in the specification of
Future is that task lifecycle can only move forwards, not backwards—just like the
ExecutorService lifecycle. Once a task is completed, it stays in that state forever.

The behavior of get varies depending on the task state (not yet started, run-
ning, completed). It returns immediately or throws an Exception if the task
has already completed, but if not it blocks until the task completes. If the task
completes by throwing an exception, get rethrows it wrapped in an Execution-

7. To express a non-value-returning task with Callable, use Callable<Void>.



126 Chapter 6. Task Execution

public interface Callable<V> {
V call() throws Exception;

}

public interface Future<V> {
boolean cancel(boolean mayInterruptIfRunning);
boolean isCancelled();
boolean isDone();
V get() throws InterruptedException, ExecutionException,

CancellationException;
V get(long timeout, TimeUnit unit)

throws InterruptedException, ExecutionException,
CancellationException, TimeoutException;

}

Listing 6.11. Callable and Future interfaces.

Exception; if it was cancelled, get throws CancellationException. If get throws
ExecutionException, the underlying exception can be retrieved with getCause.

There are several ways to create a Future to describe a task. The submit
methods in ExecutorService all return a Future, so that you can submit a Runn-
able or a Callable to an executor and get back a Future that can be used to
retrieve the result or cancel the task. You can also explicitly instantiate a Fut-
ureTask for a given Runnable or Callable. (Because FutureTask implements
Runnable, it can be submitted to an Executor for execution or executed directly
by calling its run method.)

As of Java 6, ExecutorService implementations can override newTaskFor in
AbstractExecutorService to control instantiation of the Future corresponding
to a submitted Callable or Runnable. The default implementation just creates a
new FutureTask, as shown in Listing 6.12.

protected <T> RunnableFuture<T> newTaskFor(Callable<T> task) {
return new FutureTask<T>(task);

}

Listing 6.12. Default implementation of newTaskFor in ThreadPoolExecutor.

Submitting a Runnable or Callable to an Executor constitutes a safe publica-
tion (see Section 3.5) of the Runnable or Callable from the submitting thread to
the thread that will eventually execute the task. Similarly, setting the result value
for a Future constitutes a safe publication of the result from the thread in which
it was computed to any thread that retrieves it via get.



6.3. Finding exploitable parallelism 127

6.3.3 Example: page renderer with Future

As a first step towards making the page renderer more concurrent, let’s divide it
into two tasks, one that renders the text and one that downloads all the images.
(Because one task is largely CPU-bound and the other is largely I/O-bound, this
approach may yield improvements even on single-CPU systems.)

Callable and Future can help us express the interaction between these coop-
erating tasks. In FutureRenderer in Listing 6.13, we create a Callable to down-
load all the images, and submit it to an ExecutorService. This returns a Future
describing the task’s execution; when the main task gets to the point where it
needs the images, it waits for the result by calling Future.get. If we’re lucky, the
results will already be ready by the time we ask; otherwise, at least we got a head
start on downloading the images.

The state-dependent nature of get means that the caller need not be aware
of the state of the task, and the safe publication properties of task submission
and result retrieval make this approach thread-safe. The exception handling code
surrounding Future.get deals with two possible problems: that the task encoun-
tered an Exception, or the thread calling get was interrupted before the results
were available. (See Sections 5.5.2 and 5.4.)

FutureRenderer allows the text to be rendered concurrently with download-
ing the image data. When all the images are downloaded, they are rendered onto
the page. This is an improvement in that the user sees a result quickly and it
exploits some parallelism, but we can do considerably better. There is no need for
users to wait for all the images to be downloaded; they would probably prefer to
see individual images drawn as they become available.

6.3.4 Limitations of parallelizing heterogeneous tasks

In the last example, we tried to execute two different types of tasks in parallel—
downloading the images and rendering the page. But obtaining significant per-
formance improvements by trying to parallelize sequential heterogeneous tasks
can be tricky.

Two people can divide the work of cleaning the dinner dishes fairly effectively:
one person washes while the other dries. However, assigning a different type of
task to each worker does not scale well; if several more people show up, it is not
obvious how they can help without getting in the way or significantly restructur-
ing the division of labor. Without finding finer-grained parallelism among similar
tasks, this approach will yield diminishing returns.

A further problem with dividing heterogeneous tasks among multiple workers
is that the tasks may have disparate sizes. If you divide tasks A and B between
two workers but A takes ten times as long as B, you’ve only speeded up the total
process by 9%. Finally, dividing a task among multiple workers always involves
some amount of coordination overhead; for the division to be worthwhile, this
overhead must be more than compensated by productivity improvements due to
parallelism.

FutureRenderer uses two tasks: one for rendering text and one for download-
ing the images. If rendering the text is much faster than downloading the images,



128 Chapter 6. Task Execution

public class FutureRenderer {
private final ExecutorService executor = ...;

void renderPage(CharSequence source) {
final List<ImageInfo> imageInfos = scanForImageInfo(source);
Callable<List<ImageData>> task =

new Callable<List<ImageData>>() {
public List<ImageData> call() {

List<ImageData> result
= new ArrayList<ImageData>();

for (ImageInfo imageInfo : imageInfos)
result.add(imageInfo.downloadImage());

return result;
}

};

Future<List<ImageData>> future = executor.submit(task);
renderText(source);

try {
List<ImageData> imageData = future.get();
for (ImageData data : imageData)

renderImage(data);
} catch (InterruptedException e) {

// Re-assert the thread’s interrupted status
Thread.currentThread().interrupt();
// We don’t need the result, so cancel the task too
future.cancel(true);

} catch (ExecutionException e) {
throw launderThrowable(e.getCause());

}
}

}

Listing 6.13. Waiting for image download with Future.



6.3. Finding exploitable parallelism 129

as is entirely possible, the resulting performance is not much different from the
sequential version, but the code is a lot more complicated. And the best we can do
with two threads is speed things up by a factor of two. Thus, trying to increase
concurrency by parallelizing heterogeneous activities can be a lot of work, and
there is a limit to how much additional concurrency you can get out of it. (See
Sections 11.4.2 and 11.4.3 for another example of the same phenomenon.)

The real performance payoff of dividing a program’s workload into tasks
comes when there are a large number of independent, homogeneous tasks
that can be processed concurrently.

6.3.5 CompletionService: Executor meets BlockingQueue

If you have a batch of computations to submit to an Executor and you want
to retrieve their results as they become available, you could retain the Future
associated with each task and repeatedly poll for completion by calling get with
a timeout of zero. This is possible, but tedious. Fortunately there is a better way:
a completion service.

CompletionService combines the functionality of an Executor and a Block-
ingQueue. You can submit Callable tasks to it for execution and use the queue-
like methods take and poll to retrieve completed results, packaged as Futures,
as they become available. ExecutorCompletionService implements Completion-
Service, delegating the computation to an Executor.

The implementation of ExecutorCompletionService is quite straightforward.
The constructor creates a BlockingQueue to hold the completed results. Future-
Task has a done method that is called when the computation completes. When a
task is submitted, it is wrapped with a QueueingFuture, a subclass of FutureTask
that overrides done to place the result on the BlockingQueue, as shown in Listing
6.14. The take and poll methods delegate to the BlockingQueue, blocking if
results are not yet available.

private class QueueingFuture<V> extends FutureTask<V> {
QueueingFuture(Callable<V> c) { super(c); }
QueueingFuture(Runnable t, V r) { super(t, r); }

protected void done() {
completionQueue.add(this);

}
}

Listing 6.14. QueueingFuture class used by ExecutorCompletionService.



130 Chapter 6. Task Execution

6.3.6 Example: page renderer with CompletionService

We can use a CompletionService to improve the performance of the page ren-
derer in two ways: shorter total runtime and improved responsiveness. We
can create a separate task for downloading each image and execute them in a
thread pool, turning the sequential download into a parallel one: this reduces the
amount of time to download all the images. And by fetching results from the
CompletionService and rendering each image as soon as it is available, we can
give the user a more dynamic and responsive user interface. This implementation
is shown in Renderer in Listing 6.15.

public class Renderer {
private final ExecutorService executor;

Renderer(ExecutorService executor) { this.executor = executor; }

void renderPage(CharSequence source) {
final List<ImageInfo> info = scanForImageInfo(source);
CompletionService<ImageData> completionService =

new ExecutorCompletionService<ImageData>(executor);
for (final ImageInfo imageInfo : info)

completionService.submit(new Callable<ImageData>() {
public ImageData call() {

return imageInfo.downloadImage();
}

});

renderText(source);

try {
for (int t = 0, n = info.size(); t < n; t++) {

Future<ImageData> f = completionService.take();
ImageData imageData = f.get();
renderImage(imageData);

}
} catch (InterruptedException e) {

Thread.currentThread().interrupt();
} catch (ExecutionException e) {

throw launderThrowable(e.getCause());
}

}
}

Listing 6.15. Using CompletionService to render page elements as they become
available.

Multiple ExecutorCompletionServices can share a single Executor, so it is



6.3. Finding exploitable parallelism 131

perfectly sensible to create an ExecutorCompletionService that is private to a
particular computation while sharing a common Executor. When used in this
way, a CompletionService acts as a handle for a batch of computations in much
the same way that a Future acts as a handle for a single computation. By remem-
bering how many tasks were submitted to the CompletionService and counting
how many completed results are retrieved, you can know when all the results for
a given batch have been retrieved, even if you use a shared Executor.

6.3.7 Placing time limits on tasks

Sometimes, if an activity does not complete within a certain amount of time, the
result is no longer needed and the activity can be abandoned. For example, a web
application may fetch its advertisements from an external ad server, but if the ad
is not available within two seconds, it instead displays a default advertisement so
that ad unavailability does not undermine the site’s responsiveness requirements.
Similarly, a portal site may fetch data in parallel from multiple data sources, but
may be willing to wait only a certain amount of time for data to be available
before rendering the page without it.

The primary challenge in executing tasks within a time budget is making
sure that you don’t wait longer than the time budget to get an answer or find
out that one is not forthcoming. The timed version of Future.get supports this
requirement: it returns as soon as the result is ready, but throws TimeoutExcep-
tion if the result is not ready within the timeout period.

A secondary problem when using timed tasks is to stop them when they run
out of time, so they do not waste computing resources by continuing to compute
a result that will not be used. This can be accomplished by having the task strictly
manage its own time budget and abort if it runs out of time, or by cancelling the
task if the timeout expires. Again, Future can help; if a timed get completes with
a TimeoutException, you can cancel the task through the Future. If the task is
written to be cancellable (see Chapter 7), it can be terminated early so as not to
consume excessive resources. This technique is used in Listings 6.13 and 6.16.

Listing 6.16 shows a typical application of a timed Future.get. It generates
a composite web page that contains the requested content plus an advertisement
fetched from an ad server. It submits the ad-fetching task to an executor, com-
putes the rest of the page content, and then waits for the ad until its time budget
runs out.8 If the get times out, it cancels9 the ad-fetching task and uses a default
advertisement instead.

6.3.8 Example: a travel reservations portal

The time-budgeting approach in the previous section can be easily generalized to
an arbitrary number of tasks. Consider a travel reservation portal: the user en-

8. The timeout passed to get is computed by subtracting the current time from the deadline; this may
in fact yield a negative number, but all the timed methods in java.util.concurrent treat negative
timeouts as zero, so no extra code is needed to deal with this case.
9. The true parameter to Future.cancel means that the task thread can be interrupted if the task is
currently running; see Chapter 7.



132 Chapter 6. Task Execution

Page renderPageWithAd() throws InterruptedException {
long endNanos = System.nanoTime() + TIME_BUDGET;
Future<Ad> f = exec.submit(new FetchAdTask());
// Render the page while waiting for the ad
Page page = renderPageBody();
Ad ad;
try {

// Only wait for the remaining time budget
long timeLeft = endNanos - System.nanoTime();
ad = f.get(timeLeft, NANOSECONDS);

} catch (ExecutionException e) {
ad = DEFAULT_AD;

} catch (TimeoutException e) {
ad = DEFAULT_AD;
f.cancel(true);

}
page.setAd(ad);
return page;

}

Listing 6.16. Fetching an advertisement with a time budget.

ters travel dates and requirements and the portal fetches and displays bids from
a number of airlines, hotels or car rental companies. Depending on the com-
pany, fetching a bid might involve invoking a web service, consulting a database,
performing an EDI transaction, or some other mechanism. Rather than have the
response time for the page be driven by the slowest response, it may be preferable
to present only the information available within a given time budget. For provi-
ders that do not respond in time, the page could either omit them completely or
display a placeholder such as “Did not hear from Air Java in time.”

Fetching a bid from one company is independent of fetching bids from an-
other, so fetching a single bid is a sensible task boundary that allows bid retrieval
to proceed concurrently. It would be easy enough to create n tasks, submit them
to a thread pool, retain the Futures, and use a timed get to fetch each result
sequentially via its Future, but there is an even easier way—invokeAll.

Listing 6.17 uses the timed version of invokeAll to submit multiple tasks to
an ExecutorService and retrieve the results. The invokeAll method takes a
collection of tasks and returns a collection of Futures. The two collections have
identical structures; invokeAll adds the Futures to the returned collection in the
order imposed by the task collection’s iterator, thus allowing the caller to associate
a Future with the Callable it represents. The timed version of invokeAll will
return when all the tasks have completed, the calling thread is interrupted, or
the timeout expires. Any tasks that are not complete when the timeout expires
are cancelled. On return from invokeAll, each task will have either completed
normally or been cancelled; the client code can call get or isCancelled to find



6.3. Finding exploitable parallelism 133

out which.

Summary

Structuring applications around the execution of tasks can simplify development
and facilitate concurrency. The Executor framework permits you to decouple
task submission from execution policy and supports a rich variety of execution
policies; whenever you find yourself creating threads to perform tasks, consider
using an Executor instead. To maximize the benefit of decomposing an applica-
tion into tasks, you must identify sensible task boundaries. In some applications,
the obvious task boundaries work well, whereas in others some analysis may be
required to uncover finer-grained exploitable parallelism.



134 Chapter 6. Task Execution

private class QuoteTask implements Callable<TravelQuote> {
private final TravelCompany company;
private final TravelInfo travelInfo;
...
public TravelQuote call() throws Exception {

return company.solicitQuote(travelInfo);
}

}

public List<TravelQuote> getRankedTravelQuotes(
TravelInfo travelInfo, Set<TravelCompany> companies,
Comparator<TravelQuote> ranking, long time, TimeUnit unit)
throws InterruptedException {

List<QuoteTask> tasks = new ArrayList<QuoteTask>();
for (TravelCompany company : companies)

tasks.add(new QuoteTask(company, travelInfo));

List<Future<TravelQuote>> futures =
exec.invokeAll(tasks, time, unit);

List<TravelQuote> quotes =
new ArrayList<TravelQuote>(tasks.size());

Iterator<QuoteTask> taskIter = tasks.iterator();
for (Future<TravelQuote> f : futures) {

QuoteTask task = taskIter.next();
try {

quotes.add(f.get());
} catch (ExecutionException e) {

quotes.add(task.getFailureQuote(e.getCause()));
} catch (CancellationException e) {

quotes.add(task.getTimeoutQuote(e));
}

}

Collections.sort(quotes, ranking);
return quotes;

}

Listing 6.17. Requesting travel quotes under a time budget.




